
Chapter 1

Starter on neural networks

Contents
1.1 Definition . 3

1.2 Non-constructive approximations . 7

1.3 Basic operations . 8

1.4 Constructive approximations and role of depth . 9

Historically, the structure of neural networks (NN) have been introduced to model the human
brain behavior [MP43, Ros58] in order to bring some theory foundations for artificial intelligence. Now
that deep NN can be trained with big data, these tools know an impressive come back with excellent
performances in various application fields, as speech recognition, automatic translation (e.g., Deepl),
self-driving cars, automatic diagnoses, quantum chemistry, molecular dynamics, and so on. The sus-
picious reader can type "neural network" on google scholar to measure the "worldwide triumphant
march of deep neural network" to quote [GKNV21]. Despite this success, the theoretical properties
of NN are far less understood. The aim of this lecture is to bring some theoretical explanations to the
excellent practical behavior of NN and in particular to put forward the role of the depth.

In this chapter, we introduce elementary definitions for neural networks and we provide a first
view on the approximation ability of these objects and on the role of the depth. It mostly relies on the
lecture notes of [Pet22].

1.1 Definition

Neural network Let us first provide the definition of a neural network (NN in short).

Definition 1.1. Let d ,k ≥ 1, L ≥ 2 be three integers. A neural network (NN) with input dimension
d, ouput dimension k and depth L is a pair Φ = (W,ρ) where ρ : R→ R is some function, called the
activation function, and W is a sequence of matrix-vector pairs

W = ((A1,b1), . . . , (AL ,bL)),

whose elements are called the weights (or coefficients), where for 1 ≤ ℓ≤ L, Aℓ is a Nℓ×Nℓ−1 real matrix,
and bℓ is a Nℓ-dimensional real vector, for some integers N1, . . . , NL−1 ≥ 1 (convention N0 := d, NL := k).

For a NN Φ, we can define the following quantities, all-together defining the architecture or topol-
ogy of the network:

3

CHAPTER 1. STARTER ON NEURAL NETWORKS 4

x1

x2

x3

Figure 1.1: Instance of neural network with depth L = 3, N = 17, Nmax = 7 and fully connected.

• L(Φ) = L is the depth ofΦ.

• The layers corresponding to ℓ ∈ {1, . . . ,L − 1} are called the hidden layers. Hence, L is also the
number of layers, while L−1 is the number of hidden layers.

• For each ℓ ∈ {1, . . . ,L}, Nℓ(Φ) = Nℓ denotes the number of neurons of the ℓ-th layer, also called
the ℓ-th width of Φ. The maximum width of the NN is Nmax(Φ) = max1≤ℓ≤L−1 Nℓ. The number
of neurons ofΦ is N (Φ) = d +∑L

ℓ=1 Nℓ.

• The sparsity ofΦ is the number of non-zero weights ofΦ, that is, ∥Φ∥0 =∑L
ℓ=1(∥Aℓ∥0 +∥b∥0).

• The support ofΦ is given by the sequence of supports

{(i , j) ∈ {1, . . . , Nℓ−1}× {1, . . . , Nℓ} : (Aℓ)i , j ̸= 0}, 1 ≤ ℓ≤ L.

A representation for a NN is often done via its architecture, by drawing an edge between neuron i
of layer ℓ−1 and neuron j in layer ℓ, if (Aℓ)i , j ̸= 0, see Figures 1.1 and 1.2.

A NN is associated to a particularly useful function, called the realization of the NN.

Definition 1.2. For some NN Φ = (W,ρ), with W = ((A1,b1), . . . , (AL ,bL)) having input dimension d
and output dimension k, the realization ofΦ is defined by the function

R(Φ) :Rd →RNL : x 7→ R(Φ)(x) = xL ,

where the output xL is given by the relations

x(0) = x ;

x(ℓ) = ρ(Aℓx(ℓ−1) +bℓ), 1 ≤ ℓ≤ L−1 ;

x(L) = AL x(L−1) +bL ,

for which the function ρ acts component-wise, that is, for some vector y = (yi)1≤i≤I , ρ(y) denotes the
vector (ρ(yi))1≤i≤I .

CHAPTER 1. STARTER ON NEURAL NETWORKS 5

x1

x2

x3

Figure 1.2: Same neuron structure as in Figure 1.1, but with sparsity 14 (if bℓ = 0 for 1 ≤ ℓ≤ L).

As it is apparent from Figure 1.2, two different NN can have the same realization (just remove
some useless neurons), hence distinguishing a NN from its realization is necessary to define properly
the complexity of a NN. The realization of a NN is also called a multilayer perceptron (MLP) with d-
dimensional input, k-dimension ouput, L layers (that is, L −1 hidden layers) and activation function
ρ.

Put differently, by denoting Tℓ : x ∈RNℓ−1 7→ Aℓx+bℓ ∈RNℓ , R(Φ) can be written as the composition
function

x ∈Rd 7→ R(Φ) = TL(ρ(TL−1(. . .ρ(T1(x)) . . .))) ,

or
R(Φ) = TL ◦ρ ◦ · · · ◦T2 ◦ρ ◦T1 .

Example 1.3 (Shallow network). Any NN with depth L = 2 is called a shallow network. Hence, the
realization of a shallow NN (with input/output dimension 1), takes the following particular form

x ∈R 7→
N∑

i=1
(A2,1,iρ(A1,i x +b1,i)+b2,i) = b′+

N∑
i=1

a′
iρ(ai x +bi),

where N ≥ 1 is the number of neurons of the hidden layer, and ai ,b, a′
i ,b′ are real numbers.

Finally, with some abuse, when the choice of ρ is clear from the context, we will sometimes simply
say that the NN is given byΦ= ((A1,b1), . . . , (AL ,bL)).

Network expressiveness The class of functions generated from a NN is more or less complex de-
pending on the complexity of the NN and of the choice of the activation function. The set of real-
ized NN of depth L, input dimension d , output dimension k and activation function ρ is denoted by
NNk,d (L,ρ). Informally, we say that the size of NNk,d (L,ρ) measures the expressiveness of the network.
The larger this class, the more expressive the NN.

For instance, any NN using an affine activation function realizes an affine function, which means
that it is not expressive. Hence, we are going to consider an activation function which is non-affine,
which will correspond to more expressive NN. Some popular examples are:

CHAPTER 1. STARTER ON NEURAL NETWORKS 6

• The rectified linear unit (ReLU) ρ(x) = x+ = max(0, x);

• The rectified quadratic unit (ReQU) ρ(x) = x2+.

• Any sigmoidal function, that is, a continuous function ρ :R→R such that lim∞ρ = 1, lim−∞ρ =
0. For instance, ρ(x) = 1+ (2/π)arctan(x) or ρ(x) = 1/(1+e−x).

For instance, it is clear that ReLU NN generate always continuous and piece-wise affine function,
that is, NNd ,k (L, (·)+) is contained in the set of affine functions. This can be seen as a limit of expres-
siveness of the ReLU network and could perhaps suggest to avoid using such functions. However,
we will see that the interest of ReLU NN lies in its ability to approximate regular functions. In great
generality, the expressiveness also refers to this approximation ability. This property will be further
formalize later on.

Some examples

Example 1.4 (Induced smoothness). The smoothness of ρ induces some minimum smoothness for the
realization:

• a Lipschitz ρ gives an (at least) Lipschitz realization;

• a k-times differentiable ρ gives an (at least) k-times differentiable realization;

• any NN with depth L ≥ 2 and using an activation function being polynomial of degree r ≥ 1
realizes a polynomial of degree at most r (L−1).

Example 1.5 (Realizing identity). The identity function f : x ∈ R 7→ x = x+ − (−x)+ can be realized
as a ReLU NN Φ= ((A1,b1), (A2,b2)) of depth L = 2 and N1 = 2, A1 = (1 −1)T , b1 = (0 0)T , A2 = (1 −1),
b2 = (00). In particular, any affine function can be realized as a ReLU NN. Also, this shows that a realized
NN can be more regular than the initial activation function.

Example 1.6 (Realizing identity in higher dimension and arbitrary depth). The previous example can
be generalized to arbitrary input/output dimension d = k, and depth L ≥ 2, by considering the network

ΦI d
d ,L =

(((
Id

−Id

)
,0

)
, (I2d ,0), . . . , (I2d ,0), ((Id − Id) ,0)

)
, (1.1)

in which (I2d ,0) is repeated L−2 times. With the ReLU activation function, we easily check that R(ΦI d
d ,L)

is the identity function on Rd .

The above examples show that the identity function can be realized (exactly) as a ReLU NN. It is
also interesting to note that the identity function can be realized with other more regular activation
functions, up to some approximation terms. For instance, if we use any (non-constant) differentiable
activation function, the identity function be approximated within a compact set. This roughly comes
from the Taylor approximation of ρ(x) by an affine function.

Proposition 1.7 (Approximating identity). Let K be a segment of R with non-empty interior and ρ :
R→ R be differentiable at some x∗ belonging to the interior of K with ρ′(x∗) ̸= 0. Then for every ϵ > 0,
there exists a NN Φ = ((A1,b1), (A2,b2)) with depth L = 2, N1 = 1 and ∥Φ∥0 ≤ 4 such that for all x ∈ K ,
|R(Φ)(x)−x| < ϵ.

CHAPTER 1. STARTER ON NEURAL NETWORKS 7

Proof. Assume K ⊂ [−M , M] for M > 0. First observe that by definition of the derivative of ρ at point
x∗ (and using the fact that K is compact and ρ′(x∗) ̸= 0), we have that for all ϵ > 0 there exists a Λ =
Λ(ϵ) > 0 such that for all λ>Λ for all x ∈ K we have∣∣∣∣λρ(x/λ+x∗)−ρ(x∗)

x
−ρ′(x∗)

∣∣∣∣< ϵ|ρ′(x∗)|/M .

This leads to ∣∣∣∣λρ(x/λ+x∗)−ρ(x∗)

ρ′(x∗)
−x

∣∣∣∣< ϵ|x|/M ≤ ϵ.

Now, for Φ = ((A1,b1), (A2,b2)) with A1 = 1/λ, b1 = x∗, A2 = λ/ρ′(x∗), b2 = −ρ(x∗)λ/ρ′(x∗), we have

R(Φ)(x) = λ
ρ(x/λ+x∗)−ρ(x∗)

ρ′(x∗) for all x ∈ R. Noting that the weights of Φ only depend on λ,ϵ, x∗,ρ, the
proof is finished.

1.2 Non-constructive approximations

The following result shows that a shallow network is enough to approximate arbitrary well any contin-
uous function on a compact set.

Theorem 1.8 (Universal approximation theorem, [Cyb89, HSW89]). Let ρ be any sigmoidal activation
function and K ⊂ Rd be a compact set. Then NNd ,1(2,ρ) is dense in the set of real-valued continuous
functions in K , that is, for any function f : K → R continuous on K and any ϵ > 0, there exists a NN
Φ=Φ f ,ϵ,d with L(Φ) = 2 such that supx∈K |R(Φ)(x)− f (x)| ≤ ϵ.

A proof of this result can be found in [Pet22] (Theorem 2.4). It relies on the Hahn-Banach theo-
rem and thus is not constructive. Therefore, it cannot be used to determine Φ. Moreover, while the
choice of the activation function is relatively free and the depth is fixed at L = 2, the other complexity
measures ofΦ are not guaranteed to be bounded.

Another branch of results prescribes the choice of the activation function to offer a better com-
plexity control, as in the following theorem.

Theorem 1.9 (Fast approximation). There exists a continuous piece-wise polynomial activation func-
tion ρ such that for any continuous real-valued function f on [0,1] and any ϵ > 0, there exists a NN
Φ=Φ f ,ϵ with L(Φ) = 2, N (Φ) ≤ 3, ∥Φ∥0 ≤ 3 such that supx∈[0,1] |R(Φ)(x)− f (x)| ≤ ϵ.

The idea of the proof is quite simple (see Proposition 2.21 in [Pet22] for a formal proof): since poly-
nomials with rational coefficients are dense in C ([0,1],R), we can record all possible (countable) ap-
proximation functions on segments [2i ,2i +1], i ∈Z, and concatenate the result to define a piecewise
polynomial activation function ρ. Now, any given f can be well approximated on [0,1] by translating
appropriately ρ. To complete the proof, it is sufficient to note that the latter can be realized by a NN
with only 1 non-zero coefficient in the hidden layer.

Compared to Theorem 1.8, Theorem 1.9 further bounds the sparsity of the network by ensuring
∥Φ∥0 ≤ 3. Also, it can be generalized in higher dimension by using the Kolmogorov superposition
theorem, see Theorem 2.24 in [Pet22].

However, a drawback of this kind of result is that we have put too much information in the activa-
tion function, which makes the corresponding network not usable in practice (even computing R(Φ)
is not possible!).

In this lecture, we will rather focus on network approximations with bounded L(Φ), N (Φ) and ∥Φ∥0

for a feasible activation function, like the ReLU or ReQU.

CHAPTER 1. STARTER ON NEURAL NETWORKS 8

1.3 Basic operations

Combining networks will be particularly useful when building approximating networks.

Concatenation The perhaps most natural way to combine networks is the concatenation, which
corresponding to compose the corresponding realizations. Let Φ1 = ((A1

1,b1
1), . . . , (A1

L1
,b1

L1
)) and Φ2 =

((A2
1,b2

1), . . . , (A2
L2

,b2
L2

)) be two NN such that the input dimension d1 of Φ1 is equal to the output di-
mension k2 ofΦ2. The concatenation ofΦ1 andΦ2 is defined by

Φ1 •Φ2 = ((A2
1,b2

1), . . . , (A2
L2−1,b2

L2−1), (A1
1 A2

L2
, A1

1b2
L2

+b1
1), (A1

2,b1
2), . . . , (A1

L1
,b1

L1
)). (1.2)

(Be careful of the ordering! R(Φ2) is applied before R(Φ1) here.) Since A1
1(A2

L2
x +b2

L2
)+b1

1 = A1
1 A2

L2
x +

A1
1b2

L2
+b1

1, we easily check that

R(Φ1 •Φ2) = R(Φ1)◦R(Φ2).

Note that L(Φ1 •Φ2) = L(Φ1)+L(Φ2)−1, N (Φ1 •Φ2) = N (Φ1)+N (Φ2)−2d1. Also, we have

∥Φ1 •Φ2∥0 ≤ ∥Φ1∥0 +∥Φ2∥0 +N 1
2 (N 2

L2−1 +1)−∥A2
L2
∥0 −∥b2

L2
∥0 −∥A1

1∥0 −∥b1
1∥0. (1.3)

Sparse concatenation The previous concatenation operator can be wasteful with respect to the com-
plexity ∥ · ∥0, because A1

1 A2
L2

can have much more non-zeros than A1
1 and A2

L2
(think about A1

1 =
(1 . . .1)T and A2

L2
= (1 . . .1)). Obviously, a concatenation operator which is more economic to that re-

spect would be to simply branch the output of Φ2 to the input of Φ1. However, this does not directly
provide the correct realization, because of the activation function. In case of the ReLU activation func-
tion, we can nevertheless propose a concatenation in this vein because the identity function can be
realized by a ReLU network, see Example 1.5. This is referred to the sparse concatenation.

Consider the ReLU activation function ρ(x) = x+ and let Φ1 = (
(A1

1,b1
1), . . . , (A1

L1
,b1

L1
)
)

and Φ2 =(
(A2

1,b2
1), . . . , (A2

L2
,b2

L2
)
)

be two NN such that the input dimension d1 of Φ1 is equal to the output di-
mension k2 ofΦ2. The sparse concatenation ofΦ1 andΦ2 is defined by

Φ1 ⊙ Φ2

=
(
(A2

1,b2
1), . . . , (A2

L2−1,b2
L2−1),

((
A2

L2

−A2
L2

)
,

(
b2

L2

−b2
L2

))
, ([A1

1 − A1
1],b1

1), (A1
2,b1

2), . . . , (A1
L1

,b1
L1

)

)
. (1.4)

Since for all x ∈RL2−1, we have

[A1
1 − A1

1]ρ

((
A2

L2

−A2
L2

)
x +

(
b2

L2

−b2
L2

))
+b1

1 = A1
1((A2

L2
x +b2

L2
)+− (−A2

L2
x −b2

L2
)+)+b1

1

= A1
1(A2

L2
x +b2

L2
)+b1

1,

we have
R(Φ1 ⊙ Φ2) = R(Φ1)◦R(Φ2),

as for the previous concatenationΦ1 • Φ2. However, the complexity ofΦ1 ⊙ Φ2 is somewhat different:
we have L(Φ1⊙Φ2) = L(Φ1)+L(Φ2) (slightly deeper), N (Φ1⊙Φ2) ≤ N (Φ1)+2N (Φ2) (slightly larger) and
∥Φ1 ⊙ Φ2∥0 ≤ 2∥Φ1∥0 +2∥Φ2∥0 (potentially much smaller sparsity, compare to (1.3)).

CHAPTER 1. STARTER ON NEURAL NETWORKS 9

Parallelization Another natural combination is just to parallelize network. LetΦ1 = ((A1
1,b1

1), . . . , (A1
L ,b1

L))
and Φ2 = ((A2

1,b2
1), . . . , (A2

L ,b2
L)) (with input dimensions d1 and d2) that have the same depth L. Then

the parallelization ofΦ1 andΦ2 is defined by

P (Φ1,Φ2) = ((Ã1, b̃1), . . . , (ÃL , b̃L)), (1.5)

where Ãℓ =
(

A1
ℓ

0
0 A2

ℓ

)
and b̃ℓ =

(
b1
ℓ

b2
ℓ

)
for 1 ≤ ℓ≤ L.

In addition, when d1 = d2 = d (same input dimension), it is possible to reduce a bit the complexity
when parallelizing. In that case, the parallelization ofΦ1 andΦ2 with share input is defined by

SP (Φ1,Φ2) = ((Â1, b̃1), (Ã2, b̃2), . . . , (ÃL , b̃L)), (1.6)

where Â1 =
(

A1
1

A2
1

)
.

We easily check that we have

R(P (Φ1,Φ2))(x) = (R(Φ1)(x1),R(Φ2)(x2)), x = (x1, x2) ∈Rd1 ×Rd2

R(SP (Φ1,Φ2))(x) = (R(Φ1)(x),R(Φ2)(x)), x ∈Rd1 =Rd2

which means that the parallelization just corresponds to a coupling of the realizations. This is useful
to build networks with values in a higher dimension. Note that this operation preserve the complex-
ity cost in the following sense ∥SP (Φ1,Φ2)∥0 = ∥P (Φ1,Φ2)∥0 = ∥Φ1∥0+∥Φ2∥0, N (SP (Φ1,Φ2)) = N (Φ1)+
N (Φ2)−d , N (P (Φ1,Φ2)) = N (Φ1)+N (Φ2) and Nmax(P (Φ1,Φ2)) = Nmax(SP (Φ1,Φ2)) ≤ Nmax(Φ1)+Nmax(Φ2).

Other combinations More generally, given Φ1 and Φ2 two NN, we can consider the task of building
Φ such that R(Φ) = R(Φ1)∗R(Φ2), for a given operation ∗, for instance addition or multiplication.

For the addition operator, this can be done by combining a (shared input) parallelization with a
summation step. More precisely, forΦ1 = ((A1

1,b1
1), . . . , (A1

L ,b1
L)) andΦ2 = ((A2

1,b2
1), . . . , (A2

L ,b2
L)) two NN

with the same depth L and same input/output dimensions d and k, consider the network

Φ= ((Â1, b̃1), (Ã2, b̃2), . . . , (ÃL−1, b̃L−1), (U ÃL ,U b̃L)),

where U = (1 . . .1) is a 1× k vector and with the notation used in (1.6). Then we easily check that
R(Φ) = R(Φ1)+R(Φ2). If the depths of the two networks are different and we are working with the
ReLU activation function, then one can make artificially the two depths equal by concatenating the
identity network consider in Example 1.6.

For the multiplication operator, things are much more complicated: the class of MLP is not stable
with respect to this operator. For instance, as we will see below, constructing x 7→ x2 from a ReLU
network is only possible approximately.

1.4 Constructive approximations and role of depth

Here, we provide some elementary results already showing that deep NN are better approximations
than shallow NN, for the same sparsity constraint.

As we have seen with the concatenation operator, networks are structures that behave well with
respect to the composition. For instance, the composition of n realizations of NN of depth L = 2 can be
realized with a network of depth L = n +1. The point is that the “complexity” of a function composed
n times can rapidly increase with n, while the depth of the network only increase linearly in n. Hence,
the depth is a key parameter to build sophisticated functions with NN. We illustrate this fact below
with the saw-tooth function.

CHAPTER 1. STARTER ON NEURAL NETWORKS 10

0.0 0.4 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.4 0.8
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
0.0 0.4 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

Figure 1.3: Functions T1 (left), T2 (center) and T3 (right).

The saw-tooth function First, the “hat” function is defined by

T1(x) =
{

2x x ∈ [0,1/2];
2−2x x ∈ (1/2,1].

Then, the saw-tooth function of order n, denoted by Tn , is defined by composing T1 n-times, that is,
Tn = T1 ◦ · · · ◦T1. It is left as an exercise that Tn has 2n−1 “hats”, each of size 2−n+1, or more formally,
for all x ∈ (0,1), for all integer i ∈ {0, . . . ,2n −1},

Tn(x) =
{

2n(x − i 2−n) x ∈ [i 2−n , (i +1)2−n] i even;
2n((i +1)2−n −x) x ∈ [i 2−n , (i +1)2−n] i odd.

(1.7)

Functions T1, T2 and T3 are displayed in Figure 1.3.
Now, note that since T1(x) = (2x)+−2(2x −1)++ (2x −2)+, the “hat” function T1, can be realized

with the NN

Φ(1) = ((A1,b1), (A2,b2)), A1 = (2 2 2)T , b1 = (0 −1 −2)T , A2 = (1 −2 1), b2 = 0 (1.8)

(and the ReLU activation function). By the concatenation operation, we have Tn = R(Φ(1)) ◦ · · · ◦
R(Φ(1)) = R(Φ(1) • · · · •Φ(1)) (in whichΦ(1) appears n times). This implies the following result.

Proposition 1.10 (Efficient representation of the saw-tooth function). For all n ≥ 1, the saw-tooth
function Tn can be realized with a NNΦ(n) of depth L(Φ(n)) = n+1, Nmax(Φ) = 3 and ∥Φ(n)∥0 ≤ 12n−2.

Proof. LetΦ(n) =Φ(1)•· · ·•Φ(1) (in whichΦ(1) appears n times). The result can be proved by a recursion
over n. This is true for n = 1 because L(Φ(1)) = 2 and ∥Φ(1)∥0 = 8. Now, for some n ≥ 2, assume that
Φ(n−1) has been built so that L(Φ(n−1)) = n, Nmax(Φ(n−1)) = 3, ∥Φ(n−1)∥0 ≤ 12(n − 1)− 2 with the last
affine operator being ((1 −2 1),0). Then Φ(n) =Φ(1) •Φ(n−1) and thus by the depth and ∥ · ∥0 relations
shown with the concatenation operator (see in particular (1.3)), L(Φ(n)) = L(Φ(1))+L(Φ(n−1))−1 = n+1
and ∥Φ(n)∥0 ≤ ∥Φ(1)∥0 +∥Φ(n−1)∥0 +3(3+1)−3−0−3−2 = 8+12(n −1)+12−2−8 = 12n −2.

Proposition 1.10 can already underline the role of the depth. Consider a shallow NN Φ, as in Ex-
ample 1.3, with s = ∥Φ∥0. It is clear that R(Φ) has at most s affine pieces. But the saw-tooth NNΦ(n) of
order n = ⌊(s+2)/12⌋ has a complexity ∥Φ(n)∥0 ≤ s, and realizes the function Tn with 2n = 2⌊(s+2)/12⌋ ≫ s

CHAPTER 1. STARTER ON NEURAL NETWORKS 11

affine pieces. Hence, considering a deep NN allows to generate much more affine pieces. In fact, the
saw-tooth function is nearly unbeatable at this game, because a ReLU NN can only generate a limited
number of affine pieces, as the next result shows.

Lemma 1.11. [Limit of expressiveness of ReLU NN] For an integer L ≥ 2, if ρ is piecewise affine with p
pieces. Then, for every NN Φ with d = 1, k = 1, L(Φ) = L and N1, . . . , NL−1 ≤ N , we have that R(Φ) has at
most (pN)L−1 affine pieces. In particular, a ReLU MLP of input dimension d = 1, depth L and with N
maximum neurons on each layer has a most (2N)L−1 affine pieces.

Proof. Quite elementary by a recursion on L, see the proof of Theorem 4.3 in [Pet22] for more details.

By Proposition 1.10, the saw-tooth function can be realized with Φ(n), a NN of depth L = n +1 and
maximum width Nmax = 3, and has 2n = 2L−1 affine pieces (on [0,1]). Hence it qualitatively achieves
the upper bound of Lemma 1.11 (2L−1 instead of 6L−1). Hence, the saw-tooth function somewhat
exploits all the flexibility offered by the depth of a ReLU NN to generate complex functions, at least
when the complexity is measured with the number of affine pieces.

Approximation of non-affine functions The interest of generating complex functions with deep
ReLU NN is that we can correctly approximate functions outside the class of piecewise affine func-
tions by keeping the NN somewhat sparse. Here, we exemplify this general principle with the square
function x ∈ R 7→ x2. More examples will be provided in the next chapters. The saw-tooth function is
(again !) useful with the following result.

Proposition 1.12. Consider the functions (Tn ,n ≥ 1) defined by (1.7). Then for all integer N ≥ 0, we
have

sup
x∈[0,1]

∣∣∣∣∣x2 −x +
N∑

n=1
2−2nTn(x)

∣∣∣∣∣≤ 2−2N−2.

The proof is based on the fact that HN : x ∈ [0,1] 7→ x−∑N
n=1 2−2nTn(x) is a piecewise affine function

with breakpoints k2−N , K = 0, . . . ,2N and that coincides with the square function on each of these
breakpoints. The result then follows by maximizing |x2−HN (x)| = HN (x)−x2 between two successive
breakpoints, which is easy because it reduces to a polynomial function of degree 2. The complete
proof can be found in [Pet22], see Proposition 3.8 therein.

Proposition 1.12 then entails the following approximation of the square function.

Proposition 1.13. Let ϵ ∈ (0,1/2). There exists a ReLU NNΦϵ such that

sup
x∈[0,1]

|R(Φϵ)(x)−x2| ≤ ϵ,

while L(Φϵ) ≤ 3log2(1/ϵ), Nmax(Φϵ) ≤ 6log2(1/ϵ), ∥Φϵ∥0 ≤ 26log2
2(1/ϵ).

Proof. Choose N = ⌈log2(1/ϵ)/2⌉, which is an integer 1 ≤ N ≤ log2(1/ϵ) such that 2−2N−2 ≤ ϵ. Since by
Proposition 1.12 we have supx∈[0,1] |x2 − x +∑N

n=1 2−2nTn(x)| ≤ ϵ, we only have to realize x ∈ [0,1] 7→
x −∑N

n=1 2−2nTn(x) with a network Φϵ of the appropriate complexity. First note that this can be easily
done if the last hidden layer of the NN outputs the vector (x,T1(x), . . . ,TN (x)) ∈ RN+1, since all the
elements of this vector are non-negative and since we can add ((1 −1/4 . . . ,2−2N),0) as the last layer of
Φϵ to realize the desired function.

Let us thus consider the task of realizing

x ∈ [0,1] 7→ (x,T1(x), . . . ,TN (x)) ∈RN+1.

BIBLIOGRAPHY 12

First, by Proposition 1.10, for 1 ≤ n ≤ N , the saw-tooth function Tn can be realized with a NN Φ(n) of
depth L(Φ(n)) = n +1, maximum width 3 and ∥Φ(n)∥0 ≤ 12n −2. Second, note that x ∈ [0,1] 7→ x+ is the
identity function here, so by adding N−n layers (1,0) to the output ofΦ(n), we obtain new NN, denoted
Φ(n)

N , with Tn = R(Φ(n)
N), L(Φ(n)

N) = N +1, Nmax(Φ(n)
N) ≤ 3, ∥Φ(n)

N ∥0 ≤ 12n −2+N −n ≤ 12N , 1 ≤ n ≤ N .

Also, for n = 0, we can let Φ(0)
N = ΦI d

1,N+1 (see (1.1)) that satisfies R(Φ(0))(x) = x and the above points.

SinceΦ(n)
N , 0 ≤ n ≤ N have all the same depth, we can parallelize these networks (which a shared input)

and considerΦ′ = SP (Φ(n)
N ,0 ≤ n ≤ N), with L(Φ′) = N +1, ∥Φ′∥0 ≤ 12N (N +1), Nmax(Φ′) ≤ 3(N +1) and

R(Φ′) : x ∈ [0,1] 7→ (x,T1(x), . . . ,TN (x)). Finally, this leads to the NNΦϵ, which is such that L(Φϵ) = N+2,
∥Φϵ∥0 ≤ 12N (N +1)+N +1, Nmax(Φϵ) ≤ 3(N +1).

Proposition 1.13 ensures that there exists a NN approximating the square function by an error of
at most ϵ and which as depth of order log2(1/ϵ). This can be seen as an upper bound for the NN depth
for a given accuracy ϵ. Interestingly, the next result shows a corresponding lower bound.

Proposition 1.14. For any f ∈C 3([0,1],R) which is not affine there exists a given constant c = c(f) such
that the following holds: for any ReLU NNΦwith depth L ≥ 2, and Nmax(Φ) ≤ Nmax, we have

sup
x∈[0,1]

| f (x)−R(Φ)(x)| ≥ c(2Nmax)−2(L−1).

The proof is based on the following lemma, which can be deduced from Theorem 1 in [FSB10].

Lemma 1.15. For any f ∈C 3([0,1],R) which is not affine there exists a given constant c = c(f) such that
for all p ≥ 1, infg ∥ f − g∥∞ > cp−2, where the infimum is taken over piecewise affine functions with at
most p pieces.

Proof. First, since f belongs to C 3([0,1],R) and is not affine, Lemma 1.15 entails that there exists a
constant c = c(f) such that supx∈[0,1] | f (x)− g (x)| ≥ cp−2, for all function g that are piecewise affine
with at most p pieces. Now, by Lemma 1.11, R(Φ) is piecewise affine with at most (2Nmax)L−1 pieces.
The two above facts imply the results.

Proposition 1.14 underlines the role of the depth of a network: for approximating some regular
function f with accuracy ϵ, one needs to choose a NN with depth L with c(2Nmax)−2(L−1) ≤ ϵ, that is,

L ≥ 1+0.5
log2(c/ϵ)

log2(2Nmax)
.

Hence, only sufficiently deep NN can approximate well a smooth function. In addition, for f being
the square function, we can compare the order of the above depth lower bound to the previous upper

bound. For Nmax of order log2(ϵ) (as in Proposition 1.13), we obtain a lower bound of order
log2(ϵ)

log2(log2(ϵ)) ,

which coincide with the depth order log2(ϵ) found in Proposition 1.13 up to a loglog factor.

At this point of the lecture, the picky reader could ask why should we bother to approximate regu-
lar functions with NN, since we can use the regular functions in the first place. In fact, a great interest
of NN is to approximate with only few parameters certain interesting class of functions in high dimen-
sion, see Chapter 5 [Pet22].

Bibliography

[Cyb89] George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics
of control, signals and systems, 2(4):303–314, 1989.

BIBLIOGRAPHY 13

[FSB10] Christopher L Frenzen, Tsutomu Sasao, and Jon T Butler. On the number of segments
needed in a piecewise linear approximation. Journal of Computational and Applied math-
ematics, 234(2):437–446, 2010.

[GKNV21] Rémi Gribonval, Gitta Kutyniok, Morten Nielsen, and Felix Voigtlaender. Approximation
spaces of deep neural networks. Constructive Approximation, pages 1–109, 2021.

[HSW89] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks
are universal approximators. Neural networks, 2(5):359–366, 1989.

[MP43] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in nervous
activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.

[Pet22] Philipp Petersen. Neural network theory. http://www.pc-petersen.eu/Neural_
Network_Theory.pdf, 2022.

[Ros58] Frank Rosenblatt. The perceptron: a probabilistic model for information storage and or-
ganization in the brain. Psychological review, 65(6):386, 1958.

http://www.pc-petersen.eu/Neural_Network_Theory.pdf
http://www.pc-petersen.eu/Neural_Network_Theory.pdf

	Starter on neural networks
	Definition
	Non-constructive approximations
	Basic operations
	Constructive approximations and role of depth

